- Presentación
- Temario
- Claustro
- Metodología
- Titulación
Descripción
El avance de la tecnología ha propiciado la creación y el almacenamiento de grandes cantidades de datos.
Aquí nace una oportunidad de diferenciación para las empresas con el análisis de la información generada mediante los profesionales de Data Analyst y Data Scientist.Con el Master en Big Data y Data Science gestionarás proyectos de Big Data con el uso de herramientas y técnicas actuales. ¡Accede al mercado laboral más demandado actualmente!
¿Quién puede acceder al master?
Objetivos
Salidas Profesionales
Temario
MÓDULO 1. BIG DATA Y STORYTELLING
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL BIG DATA
- ¿Qué es Big Data?
- La era de las grandes cantidades de información: historia del big data
- La importancia de almacenar y extraer información
- Big Data enfocado a los negocios
- Open data
- Información pública
- IoT (Internet of Things-Internet de las cosas)
UNIDAD DIDÁCTICA 2. FUENTES DE DATOS
- Definición y relevancia de la selección de las fuentes de datos
- Naturaleza de las fuentes de datos Big Data
UNIDAD DIDÁCTICA 3. OPEN DATA
- Definición, Beneficios y Características
- Ejemplo de uso de Open Data
UNIDAD DIDÁCTICA 4. FASES DE UN PROYECTO DE BIG DATA
- Diagnóstico inicial
- Diseño del proyecto
- Proceso de implementación
- Monitorización y control del proyecto
- Responsable y recursos disponibles
- Calendarización
- Alcance y valoración económica del proyecto
UNIDAD DIDÁCTICA 5. BUSINESS INTELLIGENCE Y LA SOCIEDAD DE LA INFORMACIÓN
- Definiendo el concepto de Business Intelligence y Sociedad de la Información
- Arquitectura de una solución Business Intelligence
- Business Intelligence en los departamentos de la empresa
- Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
- Sistemas Operacionales y Procesos ETL en un sistema de BI
- Ventajas y Factores de Riesgos del Business Intelligence
UNIDAD DIDÁCTICA 6. PRINCIPALES PRODUCTOS DE BUSINESS INTELLIGENCE
- Cuadros de Mando Integrales (CMI)
- Sistemas de Soporte a la Decisión (DSS)
- Sistemas de Información Ejecutiva (EIS)
UNIDAD DIDÁCTICA 7. BIG DATA Y MARKETING
- Apoyo del Big Data en el proceso de toma de decisiones
- Toma de decisiones operativas
- Marketing estratégico y Big Data
- Nuevas tendencias en management
- Ejercicios Prácticos
UNIDAD DIDÁCTICA 8. DEL BIG DATA AL LINKED OPEN DATA
- Concepto de Web Semántica
- Linked Data Vs. Big Data
- Lenguaje de consulta SPARQL
UNIDAD DIDÁCTICA 9. INTERNET DE LAS COSAS
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 10. STORYTELLING
- ¿Qué es el Data Storytelling?
- Elementos clave del Data Storytelling
- ¿Por qué es importante el Data Storytelling?
- ¿Cómo hacer Data Storytelling?
MÓDULO 2. DATA SCIENCE: ALMACENAMIENTO, ANÁLISIS Y PROCESAMIENTO DE DATOS
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Computing
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL Una base de datos relacional
UNIDAD DIDÁCTICA 3. BASES DE DATOS NOSQL Y EL ALMACENAMIENTO ESCALABLE
- ¿Qué es una base de datos NoSQL?
- Bases de datos Relaciones Vs Bases de datos NoSQL
- Tipo de Bases de datos NoSQL Teorema de CAP
- Sistemas de Bases de datos NoSQL
UNIDAD DIDÁCTICA 4. INTRODUCCIÓN A UN SISTEMA DE BASES DE DATOS NOSQL: MONGODB
- ¿Qué es MongoDB?
- Funcionamiento y uso de MongoDB
- Primeros pasos con MongoDB: Instalación y shell de comandos
- Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
- Actualización de datos en MongoDB: Sentencias set y update
- Trabajando con índices en MongoDB para optimización de datos
- Consulta de datos en MongoDB
UNIDAD DIDÁCTICA 5. WEKA Y DATA MINING
- ¿Qué es Weka?
- Técnicas de Data Mining en Weka
- Interfaces de Weka
- Selección de atributos
UNIDAD DIDÁCTICA 6. PENTAHO
- Una aproximación a PENTAHO
- Soluciones que ofrece PENTAHO
- MongoDB & PENTAHO
- Hadoop & PENTAHO
- Weka & PENTAHO
UNIDAD DIDÁCTICA 7. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 8. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 9. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 3. ANÁLISIS DE DATOS CON PYTHON
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL ANÁLISIS DE DATOS
- ¿Qué es el análisis de datos?
UNIDAD DIDÁCTICA 2. LIBRERÍAS PARA EL ANÁLISIS DE DATOS: NUMPY, PANDAS Y MATPLOTLIB
- Análisis de datos con NumPy
- Pandas
- Matplotlib
UNIDAD DIDÁCTICA 3. FILTRADO Y EXTRACCIÓN DE DATOS
- Cómo usar loc en Pandas
- Cómo eliminar una columna en Pandas
UNIDAD DIDÁCTICA 4. PIVOT TABLES
- Pivot tables en pandas
UNIDAD DIDÁCTICA 5. GROUPBY Y FUNCIONES DE AGREGACIÓN
- El grupo de pandas
UNIDAD DIDÁCTICA 6. FUSIÓN DE DATAFRAMES
- Python Pandas fusionando marcos de datos
UNIDAD DIDÁCTICA 7. VISUALIZACIÓN DE DATOS CON MATPLOTLIB Y CON SEABORN
- Matplotlib
- Seaborn
UNIDAD DIDÁCTICA 8. INTRODUCCIÓN AL MACHINE LEARNING
- Aprendizaje automático
UNIDAD DIDÁCTICA 9. REGRESIÓN LINEAL Y REGRESIÓN LOGÍSTICA
- Regresión lineal
- Regresión logística
UNIDAD DIDÁCTICA 10. ÁRBOL DE DECISIONES
- Estructura de árbol
UNIDAD DIDÁCTICA 11. NAIVE BAYES
- Algoritmo de Naive bayes
- Tipos de Naive Bayes
UNIDAD DIDÁCTICA 12. SUPPORT VECTOR MACHINES (SVM)
- Máquinas de vectores soporte (Support Vector Machine-SVM)
- ¿Cómo funciona SVM?
- Núcleos SVM
- Construcción de clasificador en Scikit-learn
UNIDAD DIDÁCTICA 13. KNN
- K-nearest Neighbors (KNN)
- Implementación de Python del algoritmo KNN
UNIDAD DIDÁCTICA 14. PRINCIPAL COMPONENT ANALYSIS (PCA)
- Análisis de componentes principales
UNIDAD DIDÁCTICA 15. RANDOM FOREST
- Algoritmo de Random Forest
MÓDULO 4. DATA MINING, APRENDIZAJE AUTOMÁTICO Y MACHINE LEARNING
UNIDAD DIDÁCTICA 1. MINERÍA DE DATOS O DATA MINING Y EL APRENDIZAJE AUTOMÁTICO
- Introducción a la minería de datos y el aprendizaje automático
- Proceso KDD
- Modelos y Técnicas de Data Mining
- Áreas de aplicación
- Minería de textos y Web Mining
- Data mining y marketing
UNIDAD DIDÁCTICA 2. EL CICLO DE DATA MINING: FASES Y TIPOS DE PROBLEMAS
- Tipos de problemas
- Implicaciones de los datos, dominios, técnicas en las fases del proceso
- Casos de uso
UNIDAD DIDÁCTICA 3. TÉCNICAS DE DATA MINING
- Clasificación o Arboles de decisión o Naive Bayes
- Clustering o K-means o EM
- Asociacion o A priori
UNIDAD DIDÁCTICA 4. ECOSISTEMA HADOOP
- ¿Qué es Hadoop? Relación con Big Data
- Instalación y configuración de insfraestructura y ecosistema Hadoop
- Sistema de archivos HDFS
- MapReduce con Hadoop
- Apache Hive
- Apache Hue
- Apache Spark
UNIDAD DIDÁCTICA 5. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
UNIDAD DIDÁCTICA 6. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
- Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 7. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 8. SISTEMAS EXPERTOS
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 9. INTRODUCCIÓN AL MACHINE LEARNING
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 10. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 11. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 12. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 13. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 14. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
MÓDULO 5. DESARROLLO DE DEEP LEARNING
UNIDAD DIDÁCTICA 1. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 2. SISTEMAS NEURONALES
- Redes neuronales
- Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 3. REDES DE UNA SOLA CAPA
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
UNIDAD DIDÁCTICA 4. REDES MULTICAPA
- Tipos de redes profundas
- Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 5. ESTRATEGIAS DE APRENDIZAJE
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
MÓDULO 6. PLN, CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
UNIDAD DIDÁCTICA 2. PLN EN PYTHON
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
UNIDAD DIDÁCTICA 6. ¿QUÉ ES UN CHATBOT?
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
UNIDAD DIDÁCTICA 7. RELACIÓN ENTRE IA Y CHATBOTS
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 8. ÁMBITOS DE APLICACIÓN CHATBOTS
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel
MÓDULO 7. POWER BI
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A POWER BI
- ¿Qué es Power BI?
- Funciones de Power BI
- Versiones de Power BI
- Roles de Power BI
- Planificación de proyectos con Power BI
UNIDAD DIDÁCTICA 2. INSTALACIÓN DE POWER BI
- Instalación y puesta en marcha
- Conexión de datos a Power BI
- Filtrado de datos
- Vista de datos
UNIDAD DIDÁCTICA 3. MODELADO DE DATOS
- Introducción al modelado de datos
- Creación de medidas
- Creación y relación entre tablas
- Creación de columnas y medidas calculadas
- Dinamizar columnas
- Fórmulas de consulta
UNIDAD DIDÁCTICA 4. VISUALIZACIÓN DE DATOS
- Creación de gráficas
- Tablas dinámicas
- Segmentación de datos
- Uso de objetos visuales
- Formas y cuadros de texto
- Imágenes
- Matrices y tablas
- Cómo crear un velocímetro
- Mapas
- Slicers
- Cómo modificar colores
UNIDAD DIDÁCTICA 5. DASHBOARDS
- Uso del Dashboard
- Compartir Dashboards
- Añadir Widgets
- Cómo crear reportes
- Ajustes del panel
- Preguntas y respuestas del Dashboard
UNIDAD DIDÁCTICA 6. USO COMPARTIDO DE DATOS
- Exportar datos de Power BI a Excel
- Exportar Dashboards
- Crear paquetes de contenido
- Presentación de informes
- Cómo públicar y compartir informes
- Introducción a Power BI mobile
MÓDULO 8. ANALÍTICA WEB
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA ANALÍTICA WEB
- ¿Qué es la analítica web?
- Establecimiento de objetivos y KPIs
- Métricas principales y avanzadas
- Objetivos y ventajas de medir
- Plan de medición
UNIDAD DIDÁCTICA 2. GOOGLE ANALYTICS 4
- Introducción a Google Analytics 4
- Interfaz
- Métricas y dimensiones
- Informes básicos
- Filtros
- Segmentos
- Eventos
- Informes personalizados
- Comportamiento de los usuarios e interpretación de datos
UNIDAD DIDÁCTICA 3. GOOGLE TAG MANAGER
- Introducción a GTM
- Implementación con GTM
- Medición con GTM
- Uso de Debug/Preview Mode
UNIDAD DIDÁCTICA 4. MODELOS DE ATRIBUCIÓN
- La atribución
- Multicanalidad
- Customer Journey
- Principales modelos de atribución
- Modelos de atribución personalizados
UNIDAD DIDÁCTICA 5. CREACIÓN DE DASHBORAD CON GOOGLE DATA STUDIO
- Planificación del Dashboard
- Características del Dashboard
- Introducción a Data Studio
- Conectores
- Tipos de gráficos
- Personalización de informes
- Elementos de control
- Dimensiones y métricas
- Campos Calculados
- Compartir informes
UNIDAD DIDÁCTICA 6. ANALÍTICA WEB ORIENTADA AL SEO
- Introducción al SEO
- Historia de los motores de búsqueda
- Componentes de un motor de búsqueda
- Organización de resultados en un motor de búsqueda
- La importancia del contenido
- El concepto de autoridad en Internet
- Campaña SEO
UNIDAD DIDÁCTICA 7. ANALÍTICA WEB ORIENTADA AL SEM
- Introducción al SEM
- Principales conceptos en SEM
- Sistema de pujas y Calidad del anuncio
- Primer contacto con Google Ads
- Creación de anuncios con calidad
- Indicadores clave de rendimiento en SEM
UNIDAD DIDÁCTICA 8. ANALÍTICA WEB ORIENTADA A LAS REDES SOCIALES
- Análisis del tráfico en redes sociales
- Fijar objetivos en redes sociales
- Youtube
- Tik tok
UNIDAD DIDÁCTICA 9. TÉCNICAS Y ESTRATEGIAS
- Usabilidad
- Mapas de calor
- Grabaciones de sesiones de usuario
- Ordenación de tarjetas
- Test A/B
- Test multivariante
- KPI, indicadores clave de rendimiento
- Cambios a realizar para optimizar una página web
UNIDAD DIDÁCTICA 10. OTRAS HERRAMIENTAS PARA ANALÍTICA WEB
- Hotjar
- Microsoft Power BI
- Google Search Console
- Matomo
- Awstats
- Chartbeat
- Adobe Analytics
UNIDAD DIDÁCTICA 11. COOKIES Y TECNOLOGÍAS DE SEGUIMIENTO
- ¿Qué son las cookies?
- Tipos de cookies
- GDPR
- Herramientas para manejar el consentimiento de cookies
MÓDULO 9. PROYECTO FIN DE MÁSTER
¿Con quién vas a aprender? Conoce al claustro

Rafael Marín
Ingeniero técnico en Informática de Sistemas por la Universidad de Granada (UGR), con un Curso Superior en Ciberseguridad, Business Intelligence y Big Data. Apasionado de la informática y de las nuevas tecnologías, cuenta con 10 años de experiencia y vocación en el ámbito TIC y la programación de software. Experto en Desarrollo web, Programación de aplicaciones, Análisis de datos, Big Data, Ciberseguridad y Diseño y experiencia de usuario (UX/UI).

Bibiana Moreno Leyva
CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en Desarrollo de Aplicaciones Informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y cinco años en desarrollo de aplicaciones web con distintas infraestructuras.

Daniel Rodriguez
Licenciado en Ingeniería Técnica en Informática de Sistemas. Cuenta con más de 10 años de experiencia en el desarrollo y soporte de la aplicación corporativa integral de gestión de matrículas y expedientes académicos, tutorización, facturación, logística, seguimiento del alumnado, así como gestión de grupos y convocatorias de formación.
Experto en desarrollado en aplicaciones web, servicios web, APIs e informes de Crystal Reports, dominando base de datos y lenguajes como Transact-SQL. Realiza las funciones propias de un FullStack Developer, siendo especialista en ASP.NET, jQuery, CSS (Bootstrap, Sass) y web services. Además, cuenta con gran experiencia en desarrollo de proyectos en equipo, resolución de problemas y formación de personas de prácticas en la incorporación a un puesto de trabajo.

Juan Antonio Cortés Ibáñez
Graduado en Ingeniería Informática por la UGR con Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores por la UGR. Doctorando en Tecnologías de la Información por la UGR. Cuenta con amplia experiencia como Científico de datos en el Repsol Technology Lab y en el sector de la docencia.
Metodología
EDUCA LXP se basa en 6 pilares
Titulación

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.
Explora nuestras Áreas Formativas
Construye tu carrera profesional
Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.
Máster en Big Data y Data Science