Icono de modalidad 100% Online
Icono de duración 1500 H
Icono de flexibilidad horaria Flexibilidad horaria
Precio
1895€
1895€
Seguridad y confianza en tus pagos online.

Descripción

El avance de la tecnología ha propiciado la creación y el almacenamiento de grandes cantidades de datos.

Aquí nace una oportunidad de diferenciación para las empresas con el análisis de la información generada mediante los profesionales de Data Analyst y Data Scientist.

Con el Master en Big Data y Data Science gestionarás proyectos de Big Data con el uso de herramientas y técnicas actuales. ¡Accede al mercado laboral más demandado actualmente!

¿Quién puede acceder al master?

El Master en Big Data y Data Science puede aplicarse a muchos sectores y perfiles, por lo que es dirigido para aquellas personas que quieran conocer en qué consiste el Big Data, cómo pueden aplicarlo en distintos ámbitos con el objetivo de mejorar su carrera profesional y con qué herramientas se puede llevar a cabo dichos análisis de grandes volúmenes de datos.

Objetivos

  • Aprender los principios del Big Data y el desarrollo de las fases de un proyecto de Big Data.
  • Conocer las herramientas existentes y su uso para analizar y explotar datos masivos.
  • Explotar datos y visualizar resultados a través de técnicas de Data Science.
  • Comprender y utilizar la programación estadística con R y Python.
  • Conocer en qué consiste el Data Mining y aplicarlo correctamente.
  • Saber utilizar las analíticas web para Big Data y aplicarlas mediante Google Analytics.
  • Crear visualizaciones de datos profesionales y poder compartir informes mediante Power BI.

Salidas Profesionales

Gracias a la realización de este Master en Big Data y Data Science podrás desarrollar proyectos de Big Data y te permitirá trabajar en puestos especializados como Consultor/Auditor de sistemas Big Data, Analista de datos, Arquitecto en soluciones Big Data, Experto en estrategias de desarrollo mediante Big Data, Programador de aplicaciones en Python y R o Data Scientist.

Temario

  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información: historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y Sociedad de la Información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  5. Ejercicios Prácticos
  1. Concepto de Web Semántica
  2. Linked Data Vs. Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL Una base de datos relacional
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB: Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL: Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB: Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a PENTAHO
  2. Soluciones que ofrece PENTAHO
  3. MongoDB & PENTAHO
  4. Hadoop & PENTAHO
  5. Weka & PENTAHO
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Tipos de problemas
  2. Implicaciones de los datos, dominios, técnicas en las fases del proceso
  3. Casos de uso
  1. Clasificación o Arboles de decisión o Naive Bayes
  2. Clustering o K-means o EM
  3. Asociacion o A priori
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. ¿Qué es Power BI?
  2. Funciones de Power BI
  3. Versiones de Power BI
  4. Roles de Power BI
  5. Planificación de proyectos con Power BI
  1. Instalación y puesta en marcha
  2. Conexión de datos a Power BI
  3. Filtrado de datos
  4. Vista de datos
  1. Introducción al modelado de datos
  2. Creación de medidas
  3. Creación y relación entre tablas
  4. Creación de columnas y medidas calculadas
  5. Dinamizar columnas
  6. Fórmulas de consulta
  1. Creación de gráficas
  2. Tablas dinámicas
  3. Segmentación de datos
  4. Uso de objetos visuales
  5. Formas y cuadros de texto
  6. Imágenes
  7. Matrices y tablas
  8. Cómo crear un velocímetro
  9. Mapas
  10. Slicers
  11. Cómo modificar colores
  1. Uso del Dashboard
  2. Compartir Dashboards
  3. Añadir Widgets
  4. Cómo crear reportes
  5. Ajustes del panel
  6. Preguntas y respuestas del Dashboard
  1. Exportar datos de Power BI a Excel
  2. Exportar Dashboards
  3. Crear paquetes de contenido
  4. Presentación de informes
  5. Cómo públicar y compartir informes
  6. Introducción a Power BI mobile
  1. ¿Qué es la analítica web?
  2. Establecimiento de objetivos y KPIs
  3. Métricas principales y avanzadas
  4. Objetivos y ventajas de medir
  5. Plan de medición
  1. Introducción a Google Analytics 4
  2. Interfaz
  3. Métricas y dimensiones
  4. Informes básicos
  5. Filtros
  6. Segmentos
  7. Eventos
  8. Informes personalizados
  9. Comportamiento de los usuarios e interpretación de datos
  1. Introducción a GTM
  2. Implementación con GTM
  3. Medición con GTM
  4. Uso de Debug/Preview Mode
  1. La atribución
  2. Multicanalidad
  3. Customer Journey
  4. Principales modelos de atribución
  5. Modelos de atribución personalizados
  1. Planificación del Dashboard
  2. Características del Dashboard
  3. Introducción a Data Studio
  4. Conectores
  5. Tipos de gráficos
  6. Personalización de informes
  7. Elementos de control
  8. Dimensiones y métricas
  9. Campos Calculados
  10. Compartir informes
  1. Introducción al SEO
  2. Historia de los motores de búsqueda
  3. Componentes de un motor de búsqueda
  4. Organización de resultados en un motor de búsqueda
  5. La importancia del contenido
  6. El concepto de autoridad en Internet
  7. Campaña SEO
  1. Introducción al SEM
  2. Principales conceptos en SEM
  3. Sistema de pujas y Calidad del anuncio
  4. Primer contacto con Google Ads
  5. Creación de anuncios con calidad
  6. Indicadores clave de rendimiento en SEM
  1. Análisis del tráfico en redes sociales
  2. Fijar objetivos en redes sociales
  3. Facebook
  4. Twitter
  5. Youtube
  6. LinkedIn
  7. Tik tok
  8. Instagram
  1. Usabilidad
  2. Mapas de calor
  3. Grabaciones de sesiones de usuario
  4. Ordenación de tarjetas
  5. Test A/B
  6. Test multivariante
  7. KPI, indicadores clave de rendimiento
  8. Cambios a realizar para optimizar una página web
  1. Hotjar
  2. Microsoft Power BI
  3. Google Search Console
  4. Matomo
  5. Awstats
  6. Chartbeat
  7. Adobe Analytics
  1. ¿Qué son las cookies?
  2. Tipos de cookies
  3. GDPR
  4. Herramientas para manejar el consentimiento de cookies

¿Con quién vas a aprender? Conoce al claustro

Rafael – Docentes

Rafael Marín

Ingeniero técnico en Informática de Sistemas por la Universidad de Granada (UGR), con un Curso Superior en Ciberseguridad, Business Intelligence y Big Data. Apasionado de la informática y de las nuevas tecnologías, cuenta con 10 años de experiencia y vocación en el ámbito TIC y la programación de software. Experto en Desarrollo web, Programación de aplicaciones, Análisis de datos, Big Data, Ciberseguridad y Diseño y experiencia de usuario (UX/UI).

Ir a Linkedin Icono de flecha
Bibiana – Docentes

Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en Desarrollo de Aplicaciones Informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y cinco años en desarrollo de aplicaciones web con distintas infraestructuras.

Ir a Linkedin Icono de flecha
Daniel – Docentes

Daniel Rodriguez

Licenciado en Ingeniería Técnica en Informática de Sistemas. Cuenta con más de 10 años de experiencia en el desarrollo y soporte de la aplicación corporativa integral de gestión de matrículas y expedientes académicos, tutorización, facturación, logística, seguimiento del alumnado, así como gestión de grupos y convocatorias de formación. 
Experto en desarrollado en aplicaciones web, servicios web, APIs e informes de Crystal Reports, dominando base de datos y lenguajes como Transact-SQL. Realiza las funciones propias de un FullStack Developer, siendo especialista en ASP.NET, jQuery, CSS (Bootstrap, Sass) y web services. Además, cuenta con gran experiencia en desarrollo de proyectos en equipo, resolución de problemas y formación de personas de prácticas en la incorporación a un puesto de trabajo.
 

Ir a Linkedin Icono de flecha
Juan Antonio – Docentes

Juan Antonio Cortés Ibáñez

Graduado en Ingeniería Informática por la UGR con Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores por la UGR. Doctorando en Tecnologías de la Información por la UGR. Cuenta con amplia experiencia como Científico de datos en el Repsol Technology Lab y en el sector de la docencia.

Ir a Linkedin Icono de flecha

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Titulacion de INESEM

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Master en Big Data y Data Science

Icono de modalidad 100% Online
Icono de duración 1500 H
Icono de flexibilidad horaria Flexibilidad horaria
Precio
1895€
Matricularme