- Presentación
- Temario
- Metodología
- Titulación
Descripción
¿Quién puede acceder al master?
Objetivos
Salidas Profesionales
Temario
MÓDULO 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL
- Introducción a la inteligencia artificial
- Historia
- La importancia de la IA
UNIDAD DIDÁCTICA 2. TIPOS DE INTELIGENCIA ARTIFICIAL
- Tipos de inteligencia artificial
UNIDAD DIDÁCTICA 3. ALGORITMOS APLICADOS A LA INTELIGENCIA ARTIFICIAL
- Algoritmos aplicados a la inteligencia artificial
UNIDAD DIDÁCTICA 4. RELACIÓN ENTRE INTELIGENCIA ARTIFICIAL Y BIG DATA
- Relación entre inteligencia artificial y big data
- IA y Big Data combinados
- El papel del Big Data en IA
- Tecnologías de IA que se están utilizando con Big Data
UNIDAD DIDÁCTICA 5. SISTEMAS EXPERTOS
- Sistemas expertos
- Estructura de un sistema experto
- Inferencia: Tipos
- Fases de construcción de un sistema
- Rendimiento y mejoras
- Dominios de aplicación
- Creación de un sistema experto en C#
- Añadir incertidumbre y probabilidades
UNIDAD DIDÁCTICA 6. FUTURO DE LA INTELIGENCIA ARTIFICIAL
- Futuro de la inteligencia artificial
- Impacto de la IA en la industria
- El impacto económico y social global de la IA y su futuro
MÓDULO 2. MACHINE LEARNING Y DEEP LEARNING
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL MACHINE LEARNING
- Introducción
- Clasificación de algoritmos de aprendizaje automático
- Ejemplos de aprendizaje automático
- Diferencias entre el aprendizaje automático y el aprendizaje profundo
- Tipos de algoritmos de aprendizaje automático
- El futuro del aprendizaje automático
UNIDAD DIDÁCTICA 2. EXTRACCIÓN DE ESTRUCTURA DE LOS DATOS: CLUSTERING
- Introducción
- Algoritmos
UNIDAD DIDÁCTICA 3. SISTEMAS DE RECOMENDACIÓN
- Introducción
- Filtrado colaborativo
- Clusterización
- Sistemas de recomendación híbridos
UNIDAD DIDÁCTICA 4. CLASIFICACIÓN
- Clasificadores
- Algoritmos
UNIDAD DIDÁCTICA 5. REDES NEURONALES Y DEEP LEARNING
- Componentes
- Aprendizaje
UNIDAD DIDÁCTICA 6. SISTEMAS DE ELECCIÓN
- Introducción
- El proceso de paso de DSS a IDSS
- Casos de aplicación
UNIDAD DIDÁCTICA 7. DEEP LEARNING CON PYTHON, KERAS Y TENSORFLOW
- Aprendizaje profundo
- Entorno de Deep Learning con Python
- Aprendizaje automático y profundo
UNIDAD DIDÁCTICA 8. SISTEMAS NEURONALES
- Redes neuronales
- Redes profundas y redes poco profundas
UNIDAD DIDÁCTICA 9. REDES DE UNA SOLA CAPA
- Perceptrón de una capa y multicapa
- Ejemplo de perceptrón
UNIDAD DIDÁCTICA 10. REDES MULTICAPA
- Tipos de redes profundas
- Trabajar con TensorFlow y Python
UNIDAD DIDÁCTICA 11. ESTRATEGIAS DE APRENDIZAJE
- Entrada y salida de datos
- Entrenar una red neuronal
- Gráficos computacionales
- Implementación de una red profunda
- El algoritmo de propagación directa
- Redes neuronales profundas multicapa
MÓDULO 3. PROCESAMIENTO DE LENGUAJE NATURAL (PLN)
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN AL PLN
- ¿Qué es PLN?
- ¿Qué incluye el PLN?
- Ejemplos de uso de PLN
- Futuro del PLN
UNIDAD DIDÁCTICA 2. RECURSOS PARA EL PLN
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- PLN en Python con la librería NLTK
- Otras herramientas para PLN
UNIDAD DIDÁCTICA 3. COMPUTACIÓN DE LA SINTAXIS PARA EL PLN
- Principios del análisis sintáctico
- Gramática libre de contexto
- Analizadores sintácticos (Parsers)
UNIDAD DIDÁCTICA 4. COMPUTACIÓN DE LA SEMÁNTICA PARA EL PLN
- Aspectos introductorios del análisis semántico
- Lenguaje semántico para PLN
- Análisis pragmático
UNIDAD DIDÁCTICA 5. RECUPERACIÓN Y EXTRACCIÓN DE LA INFORMACIÓN
- Aspectos introductorios
- Pasos en la extracción de información
- Ejemplo PLN
- Ejemplo PLN con entrada de texto en inglés
MÓDULO 4. CHATBOTS E INTELIGENCIA ARTIFICIAL
UNIDAD DIDÁCTICA 1 .¿QUÉ ES LA INTELIGENCIA ARTIFICIAL?
- Introducción a la Inteligencia artificial
- El Test de Turing
- Agentes Inteligentes
- Aplicaciones de la inteligencia artificial
UNIDAD DIDÁCTICA 2. ¿QUÉ ES UN CHATBOT?
- Aspectos introductorios
- ¿Qué es un chatbot?
- ¿Cómo funciona un chatbot?
- VoiceBots
- Desafios para los Chatbots
UNIDAD DIDÁCTICA 3. RELACIÓN ENTRE IA Y CHATBOTS
- Chatbots y el papel de la Inteligencia Artificial (IA)
- Usos y beneficios de los chatbots
- Diferencia entre bots, chatbots e IA
UNIDAD DIDÁCTICA 4. ÁMBITOS DE APLICACIÓN CHATBOTS
- Áreas de aplicación de Chatbots
- Desarrollo de un chatbot con ChatterBot y Python
- Desarrollo de un chatbot para Facebook Messenger con Chatfuel
MÓDULO 5. DATA SCIENCE Y PROGRAMACIÓN ESTADÍSTICA CON PYTHON Y R
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN A LA CIENCIA DE DATOS
- ¿Qué es la ciencia de datos?
- Herramientas necesarias para el científico de datos
- Data Science & Cloud Compunting
- Aspectos legales en Protección de Datos
UNIDAD DIDÁCTICA 2. BASES DE DATOS RELACIONALES
- Introducción
- El modelo relacional
- Lenguaje de consulta SQL
- MySQL. Una base de datos relacional
UNIDAD DIDÁCTICA 3. PYTHON Y EL ANÁLISIS DE DATOS
- Introducción a Python
- ¿Qué necesitas?
- Librerías para el análisis de datos en Python
- MongoDB, Hadoop y Python. Dream Team del Big Data
UNIDAD DIDÁCTICA 4. R COMO HERRAMIENTA PARA BIG DATA
- Introducción a R
- ¿Qué necesitas?
- Tipos de datos
- Estadística Descriptiva y Predictiva con R
- Integración de R en Hadoop
UNIDAD DIDÁCTICA 5. PRE-PROCESAMIENTO & PROCESAMIENTO DE DATOS
- Obtención y limpieza de los datos (ETL)
- Inferencia estadística
- Modelos de regresión
- Pruebas de hipótesis
UNIDAD DIDÁCTICA 6. ANÁLISIS DE LOS DATOS
- Inteligencia Analítica de negocios
- La teoría de grafos y el análisis de redes sociales
- Presentación de resultados
MÓDULO 6. MACHINE LEARNING CON ARDUINO Y TENSORFLOW 2.0
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN Y PRIMEROS PASOS
UNIDAD DIDÁCTICA 2. PREPARACIÓN DE ARDUINO Y CONFIGURACIÓN DE ENTORNO PYTHON
UNIDAD DIDÁCTICA 3. CODIFICACIÓN Y CONTROL DE ARDUINO CON PYTHON
UNIDAD DIDÁCTICA 4. MANEJO DE ENTRADAS ANALÓGICAS CON PYTHON
UNIDAD DIDÁCTICA 5. USO DE SALIDAS ANALÓGICAS
UNIDAD DIDÁCTICA 6. INTRODUCCIÓN A MACHINE LEARNING
UNIDAD DIDÁCTICA 7. REDES NEURONALES, SERIES TEMPORALES Y PROBLEMAS DE REGRESIÓN
UNIDAD DIDÁCTICA 8. OBTENCIÓN DE PARÁMETROS EN ARDUINO Y GENERACIÓN DE CONJUNTOS DE DATOS
UNIDAD DIDÁCTICA 9. PROCESAMIENTO DE DATOS Y ETAPA DE ENTRENAMIENTO
UNIDAD DIDÁCTICA 10. CREACIÓN DE RED NEURONAL ARTIFICIAL Y APLICACIONES CON ARDUINO Y TENSORFLOW CON KERAS
MÓDULO 7. VISIÓN ARTIFICIAL Y SU APLICACIÓN EN LA INDUSTRIA 4.0
UNIDAD DIDÁCTICA 1. LA VISIÓN ARTIFICIAL: DEFINICIÓN Y ASPECTOS PRINCIPALES
- La visión artificial: definiciones y aspectos principales
UNIDAD DIDÁCTICA 2. COMPONENTES DE UN SISTEMA DE VISIÓN ARTIFICIAL
- Ópticas
- Iluminación
- Cámaras
- Sistemas 3D
- Sensores
- Equipos compactos
- Metodologías para la selección del hardware
UNIDAD DIDÁCTICA 3. PROCESADO DE IMÁGENES MEDIANTE VISIÓN ARTIFICIAL
- Algoritmos
- Software
- Segmentación e interpretación de imágenes
- Metodologías para la selección del software
UNIDAD DIDÁCTICA 4. APLICACIONES DE LA VISIÓN EN LA INDUSTRIA 4.0
- Aplicaciones clásicas: discriminación, detección de fallos…
- Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
MÓDULO 8. PROGRAMACIÓN DE VISIÓN ARTIFICIAL CON PYTHON Y OPENCV
UNIDAD DIDÁCTICA 1. INTRODUCCIÓN E INSTALACIÓN DE OPENCV
- Descripción general OpenCV
- Instalación OpenCV para Python en Windows
- Instalación OpenCV para Python en Linux
- Anaconda y OpenCV
UNIDAD DIDÁCTICA 2. MANEJO DE FICHEROS, CÁMARAS E INTERFACES GRÁFICAS
- Manejo de archivos
- Leer una imagen con OpenCV
- Mostrar imagen con OpenCV
- Guardar una imagen con OpenCV
- Operaciones aritméticas en imágenes usando OpenCV
- Funciones de dibujo
UNIDAD DIDÁCTICA 3. TRATAMIENTO DE IMÁGENES
- Redimensión de imágenes
- Erosión de imágenes
- Desenfoque de imágenes
- Bordeado de imágenes
- Escala de grises en imágenes
- Escalado, rotación, desplazamiento y detección de bordes
- Erosión y dilatación de imágenes
- Umbrales simples
- Umbrales adaptativos
- Umbral de Otsu
- Contornos de imágenes
- Incrustación de imágenes
- Intensidad en imágenes
- Registro de imágenes
- Extracción de primer plano
- Operaciones morfológicas en imágenes
- Pirámide de imágen
UNIDAD DIDÁCTICA 4. HISTOGRAMAS Y TEMPLATE MATCHING
- Analizar imágenes usando histogramas
- Ecualización de histogramas
- Template matching
- Detección de campos en documentos usando Template matching
UNIDAD DIDÁCTICA 5. COLORES Y ESPACIOS DE COLOR
- Espacios de color en OpenCV
- Cambio de espacio de color
- Filtrado de color
- Denoising de imágenes en color
- Visualizar una imagen en diferentes espacios de color
UNIDAD DIDÁCTICA 6. DETECCIÓN DE CARAS Y EXTRACCIÓN DE CARACTERÍSTICAS
- Detección de líneas
- Detección de círculos
- Detectar esquinas (Método Shi-Tomasi)
- Detectar esquinas (método Harris)
- Encontrar círculos y elipses
- Detección de caras y sonrisas
UNIDAD DIDÁCTICA 7. APRENDIZAJE AUTOMÁTICO
- Vecino más cercano (K-Nearest Neighbour)
- Agrupamiento de K-medias (K-Means Clustering)
MÓDULO 9. IOT (INTERNET DE LAS COSAS) Y SISTEMAS CIBERFÍSICOS EN LA INDUSTRIA 4.0
UNIDAD DIDÁCTICA 1. INTERNET DE LAS COSAS
- Contexto Internet de las Cosas (IoT)
- ¿Qué es IoT?
- Elementos que componen el ecosistema IoT
- Arquitectura IoT
- Dispositivos y elementos empleados
- Ejemplos de uso
- Retos y líneas de trabajo futuras
UNIDAD DIDÁCTICA 2. SISTEMAS CIBERFÍSICOS
- Contexto Sistemas Ciberfísicos (CPS)
- Características CPS
- Componentes CPS
- Ejemplos de uso
- Retos y líneas de trabajo futuras
MÓDULO 10. PROYECTO FIN DE MÁSTER
Metodología
EDUCA LXP se basa en 6 pilares
Titulación
INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.
Explora nuestras Áreas Formativas
Construye tu carrera profesional
Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.
Máster en Inteligencia Artificial y Deep Learning